Rigorous confidence bounds for MCMC under a geometric drift condition

نویسندگان

  • Krzysztof Latuszynski
  • Wojciech Niemiro
چکیده

interest and Ît,n = (1/n) ∑t+n−1 i=t f(Xi) its MCMC estimate. Precisely, we derive lower bounds for the length of the trajectory n and burn-in time t which ensure that P (|Ît,n − I| ≤ ε) ≥ 1− α. The bounds depend only and explicitly on drift parameters, on the V−norm of f, where V is the drift function and on precision and confidence parameters ε, α. Next we analyse an MCMC estimator based on the median of multiple shorter runs that allows for sharper bounds for the required total simulation cost. In particular the methodology can be applied for computing Bayesian estimators in practically relevant models. We illustrate our bounds numerically in a simple example.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Explicit control of subgeometric ergodicity

This paper discusses explicit quantitative bounds on the convergence rates of Markov chains on general state spaces, under so-called drift and minorization conditions. The focus of this paper is on practical conditions that lead to subgeometric rates. Such explicit bounds are particularly relevant in applications where a family of Markov transition probabilities {Pθ : θ ∈ Θ} is considered and f...

متن کامل

Convergence of Adaptive Markov Chain Monte Carlo Algorithms

In the thesis, we study ergodicity of adaptive Markov Chain Monte Carlo methods (MCMC) based on two conditions (Diminishing Adaptation and Containment which together imply ergodicity), explain the advantages of adaptive MCMC, and apply the theoretical result for some applications. First we show several facts: 1. Diminishing Adaptation alone may not guarantee ergodicity; 2. Containment is not ne...

متن کامل

Nonasymptotic bounds on the estimation error of MCMC algorithms

We address the problem of upper bounding the mean square error of MCMC estimators. Our analysis is non-asymptotic. We first establish a general result valid for essentially all ergodic Markov chains encountered in Bayesian computation and a possibly unbounded target function f. The bound is sharp in the sense that the leading term is exactly σ as(P, f)/n, where σ 2 as(P, f) is the CLT asymptoti...

متن کامل

Exponential inequalities for unbounded functions of geometrically ergodic Markov chains. Applications to quantitative error bounds for regenerative Metropolis algorithms

The aim of this note is to investigate the concentration properties of unbounded functions of geometrically ergodic Markov chains. We derive concentration properties of centered functions with respect to the square of Lyapunov’s function in the drift condition satisfied by the Markov chain. We apply the new exponential inequalities to derive confidence intervals for MCMC algorithms. Quantitativ...

متن کامل

Markov Chain Monte Carlo Algorithms: Theory and Practice

We describe the importance and widespread use of Markov chain Monte Carlo (MCMC) algorithms, with an emphasis on the roles in which theoretical analysis can help with their practical implementation. In particular, we discuss how to achieve rigorous quantitative bounds on convergence to stationarity using the coupling method together with drift and minorisation conditions. We also discuss recent...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Complexity

دوره 27  شماره 

صفحات  -

تاریخ انتشار 2011